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Abstract

With vibration isolation of buildings and turbomachinery blades in mind, we study the dynamic
behaviour of a single-mass two-degree-of-freedom oscillator with dry friction damper, viscous damper and
elastic spring connected in parallel. The mass is mounted on an elastic supporting plate allowing movement
in two directions on a plane. We formulate a multi-dimensional friction model, from which the sliding
conditions and the sticking conditions of the mass are derived. For calculations we develop a group-
preserving scheme, which preserves the projective proper orthochronous Lorentz group PSOoð2; 1Þ
symmetry of the model in the sliding phase so as to satisfy automatically the sliding conditions at each time
step without iteration at all. The oscillator is then subjected to simple harmonic excitations, and the
responses are displayed. According to the simple harmonic balance method together with a circular orbit
assumption on displacements, we derive closed-form formulae for handily estimating the steady state
responses, which are then compared with the results calculated by the group-preserving scheme to confirm
the applicability of the formulae. We also derive formulae specifically for a two-dimensional friction
oscillator with rigid base support, which include an exact formula of the magnification factor and a simple
formula for estimating the minimum driving force amplitude (or the maximum friction force bound) to
avoid sticking.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Friction oscillator

The study of non-linear hysteretic behaviour of mechanical systems due to friction has been of
great interest to engineers and researchers in a variety of engineering fields, since many
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engineering systems exhibit frictional behaviour under cyclic loading. Fig. 1 shows two vibration
isolation cases: (a) using base isolators for buildings [1] and (b) using damper plates for
turbomachinery blades [2]. Both utilize the mechanism of contact friction to reduce the vibration
amplitude and display non-linear, hysteretic behaviour. A survey of various non-linear friction
oscillators was given in, for example, Ref. [1]. More detailed discussions of Coulomb friction can
be found in a review article by Ibrahim [2].

In the past the studies of hysteretic systems are most restricted to one-dimensional oscillators;
see, for example, Refs. [3,4]. However, a more practical estimation of the effects of external
excitations on systems should suitably account for the simultaneous action of the two components
of the external excitations. The dry friction dampers used in turbomachinery to reduce the
vibration of the turbine blade often exhibit two-dimensional contact friction motion [5,6]. Due to
friction character the multi-dimensional problems become much more difficult to analyze than the
one-dimensional problems [7–9].

In this paper we consider a two-dimensional friction oscillator subjected to an external force
pðtÞ: The equation of motion of the oscillator can be written as

m .xðtÞ þ c ’xðtÞ þ rðtÞ ¼ pðtÞ; ð1Þ

where the boldfaced lower case letters x; r and p are the 2 � 1 matrices of displacement, speed-
independent constitutive force, and external force, respectively. The velocity-dependent
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Fig. 1. (a) Building base isolation and (b) vibration abatement of turbomachinery blade which may be simulated by the

friction oscillator.
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constitutive force c ’x is due to viscous damping and the speed-independent constitutive force r is
assumed to be the sum of the friction force ra and the spring force rb; i.e.,

r ¼ ra þ rb; ð2Þ

with

’rb ¼ k ’x: ð3Þ

Eq. (1) together with some prescribed initial conditions xðtiÞ and ’xðtiÞ constitutes an initial-value
problem. Here and later t is time and ti is an initial time; a superposed dot denotes time
differentiation; m; c and k are the mass, viscous damping coefficient and elastic spring coefficient,
respectively, and m > 0; cX0; k > 0 are given.

2. Multi-dimensional friction model

The relation between the friction force ra and the displacement x is assumed to be described by

’x ¼ ’xe þ ’xf ; ð4Þ

’ra ¼ kd ’x
e; ð5Þ

’lra ¼ ry ’x
f ; ð6Þ

jjrajjpry; ð7Þ

’lX0; ð8Þ

’ljjrajj ¼ ry
’l; ð9Þ

where kd > 0 and ry > 0 are given constants. If the displacement x is horizontal on the earth
ground, the friction force bound ry is given by ry ¼ mgm; where m is the so-called dynamic
coefficient of friction and g is the gravitational acceleration constant. jjrajj is the Euclidean norm
of ra; and xe and xf are the 2 � 1 matrices of elastic deformation and frictional slip displacement,
respectively, whereas l is a scalar function of t:

The multi-dimensional friction model (2)–(9) is an extension of the one-dimensional Coulomb
friction model [10], which can be realized through a mechanical apparatus as shown in Fig. 2. The
model is usually used to simulate the frictional behaviour of base isolators of buildings [1] and
damper plates of turbomachinery blades [11–14]; see Fig. 1. An interesting approach to model
two-dimensional friction using a discretization procedure has been given in Ref. [15]. The base
isolator (or the damper plate) is assumed to be massless, and has the elastic spring coefficient kd

corresponding to the elastic deformation xe and the friction force bound ry corresponding to the
frictional slip displacement xf : It is designed to reduce the vibration of the building (or the blade),
which has the mass m; the viscous damping coefficient c; the elastic spring coefficient k; and the
displacement x:

The arrangement of mechanical elements schematically drawn in Fig. 3 may help explain the
meanings of Eqs. (2)–(9). Eq. (2) decomposes the speed-independent constitutive force r into the
friction force ra and the spring force rb; the latter of which is coaxial with and proportional to x as
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shown in Eq. (3); Eq. (4) decomposes the displacement x into the elastic part and the frictional
part, the latter of which is the relative slip displacement between the contact surfaces; Eq. (5)
expresses the linear law for the elastic part; Eq. (6) is a refined version of the dry friction law
relating the friction force ra to the frictional slip velocity ’xf [10]; inequality (7) specifies the
maximum magnitude of the friction force ra to be ry; called the friction force bound; inequality (8)
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Fig. 2. A mechanical apparatus of the single-mass two-degree-of-freedom friction oscillator.

Fig. 3. Schematic drawing showing the connection of mechanical elements.
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(with the aid of Eq. (10)) requires the frictional slip speed to be non-negative and hence the arc
length of the frictional slip orbit to be never decreasing; and Eq. (9) requires either ’l ¼ 0 or
jjrajj ¼ ry: This last equation when combined with the two inequalities (7) and (8) is indeed the
source of the two phases—the sticking phase and the sliding phase. The significance of the
complementary trios (7)–(9) cannot be overemphasized. It furnishes the model with an on–off
switch for the mechanism of friction sliding, and the conditions to switch on the mechanism (i.e.,
the sliding) and the conditions to switch off the mechanism (i.e., the sticking) can thus be derived
in a very precise way. Thereby the model can be either in the sliding phase governed by Eqs. (4)–
(6) or in the sticking phase governed by ’ra ¼ kd ’x: Further analyses will be given in the following
sections.

If we view the frictional slip displacement xf as plastic displacement xp and ry as yield strength
for an elastoplastic structure, replace Eq. (5) by ’r ¼ ke ’x

e; replace Eq. (3) by ’rb ¼ kp ’x
p; and leave

the others in Eqs. (1)–(9) unchanged, we have a bilinear oscillator with elastic stiffness ke and
kinematic stiffness kp: Liu [16] has applied group-preserving scheme to calculate the responses of
the bilinear oscillator under harmonic loadings, and has adopted a single-term harmonic balance
method to develop closed-form formulae for calculating steady state responses. The present paper
applies and extends these methods to the two-dimensional friction oscillator under harmonic
loadings. The latter problem has been treated by Griffin and Menq [11], Menq et al. [12,13], and
Sanliturk and Ewins [14]. However, these cited papers utilized numerical methods to calculate
steady state responses and gave no closed-form formulae for the oscillation amplitude, phase lags,
and the minimum force ratio required to prevent the two-dimensional friction oscillator from
sticking. The main contributions of the present paper are two-fold: developing a group-preserving
scheme to calculate the responses under general loading conditions, which guarantees the
automatic fulfillment of the sliding conditions without any iteration involved, and deriving closed-
form formulae for calculating steady state responses under the assumption of circular orbit of
displacement. However, Menq and Yang [13] have developed a numerical procedure to calculate
steady state responses allowing the orbit of displacement to be elliptic.

The present paper does not consider non-planar geometric shapes of the contact damper
surfaces such as spherical surfaces, etc., nor the contact force variation and intermittent
separation in the direction normal to the contact damper surfaces [17,18]. Nevertheless, if the
curved contact surfaces of the friction damper are assumed to be nearly planar, the constitutive
relation of the damper can be shown to be equivalent to a parallel combination of an elastic spring
ðkÞ and a friction damper ðryÞ with planar contact surfaces [19], and hence for such case the
method presented herein is still applicable (with kd ¼ N). Usually, the three-dimensional contact
kinematics and the two-dimensional frictional models also depend on the geometries and types of
the friction dampers (or isolators). For these cases and their applications the interested readers are
referred to the papers by Yang et al. [18] and Almaz!an et al. [19].

3. Sliding versus sticking

Taking the Euclidean norm of both sides of Eq. (6) and noting Eqs. (8) and (9) and also ry > 0;
we have

’l ¼ jj ’xf jj; ð10Þ

ARTICLE IN PRESS

C.-S. Liu et al. / Journal of Sound and Vibration 266 (2003) 49–74 53



which tells us that lðtÞ is nothing but the arc length (mileage) at time t of the frictional slip orbit.
By using Eq. (10), Eq. (6) becomes

ra ¼ ry
’xf

jj ’xf jj
; ð11Þ

if jj ’xf jj > 0: Note that in the literature, e.g., [11,13], this equation along with inequality (7) was
often used to model the multi-dimensional dry friction; however, from the above derivations it is
clear that Eqs. (4)–(9) imply Eq. (11), but conversely Eqs. (11) and (7) do not suffice to lead to
Eqs. (4)–(9). Especially, when jj ’xf jj ¼ 0 the above equation is not well defined.

Combining Eqs. (4)–(6), we have

’ra þ
kd

’l
ry

ra ¼ kd ’x: ð12Þ

The inner product of ra with Eq. (12) is

kdr
a � ’x ¼ ra � ’ra þ

kd
’l

ry

ra � ra; ð13Þ

which, upon noting the constancy and positivity of both ry and kd ; asserts that

ra � ra ¼ r2
y ) ra � ’x ¼ ’lry: ð14Þ

With this and Eq. (10) we get

’l ¼ jj ’xf jj ¼
1

ry

ra � ’x > 0 if jjrajj ¼ ry and ra � ’x > 0; ð15Þ

’l ¼ jj ’xf jj ¼ 0 if jjrajjory or ra � ’xp0 or both: ð16Þ

These serve the switching criteria for the mechanism of friction sliding. Thus, Eq. (12) becomes a
two-phase non-linear system of equations:

’ra ¼ kd ’x	
kd

r2
y

ra � ’xra if jjrajj ¼ ry and ra � ’x > 0; ð17Þ

’ra ¼ kd ’x if jjrajjory or ra � ’xp0 or both: ð18Þ

According to criteria (15) and (16) and the complementary trios (7)–(9), the friction model has
two phases (and just two phases): the sliding phase in which ’l > 0 and jjrajj ¼ ry; and the sticking
phase in which ’l ¼ 0 and jjrajjpry: In the sliding phase the mechanism of dry friction sliding is
working so that the contact surfaces slide relative to each other and the model exhibits the energy-
dissipative behaviour with the energy dissipation rate ry

’l > 0; which is irreversible, while in the off
phase the mechanism of dry friction sliding is shut off and the contact surfaces are sticking
together so that the model responds elastically and reversibly.

Eqs. (17), (18), (2) and (3) together with the equation of motion (1) constitutes a two-phase
third degree non-linear differential equations system for x and ra: Usually, the equations are
solved by numerical schemes, but it is hard to match the sliding condition jjrajj ¼ ry in the sliding
phase unless specifically designed to do so. In the next section, we will design a group-preserving
scheme, which fulfills the condition jjrajj ¼ ry exactly. In Fig. 4(a) the friction force ra is
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represented by an oriented vector whose end point is located on the surface jjrajj ¼ ry: In Fig. 4(b)
the two-phase characteristic of the model is represented by a two-heavy-segment line.

4. Group-preserving scheme

Define

y :¼ ’x:

Then it follows from Eqs. (1)–(3) and (17) that

’x ¼ y; ð19Þ

’y ¼ 	
1

m
ðkxþ cyþ ra 	 pÞ; ð20Þ

’ra ¼ kdy	
kd

r2
y

ra � yra: ð21Þ

They are cubic non-linear differential equations system in space ðx; y; raÞ; governing the motion in
the sliding phase. In the sticking phase the equations are rather simple as follows:

’x ¼ y; ð22Þ

’y ¼ 	
k þ kd

m
x	

c

m
yþ

1

m
p: ð23Þ

From Eqs. (19)–(21) it is obvious that the source of the non-linearity of the model system is the
constitutive relation of ra and y: In order to enhance the computational accuracy and efficiency,
let us return to Eqs. (12) and (15) in the sliding phase. Upon introducing the integrating factor

X 0 :¼ exp
kdl
ry

� �
; ð24Þ
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Fig. 4. (a) The allowable friction force region is a disc with radius ry; the direction of the friction force is ’xf : (b) Two

segments: one segment represents the sliding phase fjj ’xf jj > 0 and jjrajj ¼ ryg and the other represents the sticking phase

fjj ’xf jj ¼ 0 and jjrajjpryg:
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and by using Eqs. (15), (19) and (21), we have

d

dt

X 0ra=ry

X 0

" #
¼ A

X 0ra=ry

X 0

" #
; ð25Þ

where

A :¼
kd

ry

0 0 y1

0 0 y2

y1 y2 0

2
64

3
75 ð26Þ

satisfies

Atgþ gA ¼ 0; ð27Þ

with

g :¼

1 0 0

0 1 0

0 0 	1

2
64

3
75 ð28Þ

the metric of the Minkowski space M3: In above the superscript t denotes the transpose. The
group fGg generated from the algebra fAg is an element of the proper orthochronous Lorentz
group SOoð2; 1Þ; preserving the metric g;

GtgG ¼ g: ð29Þ

Accordingly, a group-preserving scheme [20] of the time-centered Euler type is available for
Eq. (25),

X 0ðn þ 1Þraðn þ 1Þ=ry

X 0ðn þ 1Þ

" #
¼ ½I	 tAðnÞ	1½Iþ tAðnÞ

X 0ðnÞraðnÞ=ry

X 0ðnÞ

" #
; ð30Þ

where raðnÞ denotes the numerical value of ra at a discrete time tn and so on, and t is one half of
the time increment, that is, t :¼ Dt=2 ¼ ðtnþ1 	 tnÞ=2: Substituting Eq. (26) for A in the above
equation and taking projection yields

ra
1ðn þ 1Þ ¼

ðt2k2
d ½y

2
1ðnÞ 	 y2

2ðnÞ þ r2
yÞr

a
1ðnÞ þ 2t2k2

dy1ðnÞy2ðnÞra
2ðnÞ þ 2tkdr2

yy1ðnÞ

2tkdy1ðnÞra
1ðnÞ þ 2tkdy2ðnÞra

2ðnÞ þ t2k2
d ½y

2
1ðnÞ þ y2

2ðnÞ þ r2
y

; ð31Þ

ra
2ðn þ 1Þ ¼

ðt2k2
d ½y

2
2ðnÞ 	 y2

1ðnÞ þ r2
yÞr

a
2ðnÞ þ 2t2k2

dy1ðnÞy2ðnÞra
1ðnÞ þ 2tkdr2

yy2ðnÞ

2tkdy1ðnÞra
1ðnÞ þ 2tkdy2ðnÞra

2ðnÞ þ t2k2
d ½y

2
1ðnÞ þ y2

2ðnÞ þ r2
y

: ð32Þ
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Eqs. (31) and (32) together with the discretizations of Eqs. (19) and (20) constitute a numerical
scheme for the non-linear system in the sliding phase,

x1ðn þ 1Þ ¼ x1ðnÞ þ Dty1ðnÞ; ð33Þ

x2ðn þ 1Þ ¼ x2ðnÞ þ Dty2ðnÞ; ð34Þ

y1ðn þ 1Þ ¼ y1ðnÞ 	
1

m
Dt½kx1ðnÞ þ cy1ðnÞ þ ra

1ðnÞ 	 p1ðnÞ; ð35Þ

y2ðn þ 1Þ ¼ y2ðnÞ 	
1

m
Dt½kx2ðnÞ þ cy2ðnÞ þ ra

2ðnÞ 	 p2ðnÞ: ð36Þ

From Eqs. (31) and (32) it follows that

jjraðnÞjj ¼ ry ) jjraðn þ 1Þjj ¼ ry

for each time increment in the sliding phase; therefore, this scheme is remarkably guaranteed to
match exactly the sliding condition jjrajj ¼ ry: So we emphasize that the group-preserving scheme
as shown by Eqs. (31)–(36) is much more accurate, efficient and stable than conventional
numerical schemes, because the new scheme preserves the internal symmetry PSOoð2; 1Þ; the
projective proper orthochronous Lorentz group, of the model in the sliding phase so as to satisfy
automatically the sliding conditions at each time step without iteration at all.

5. Numerical results

In the remainder of the paper let us restrict the two-dimensional external force pðtÞ to be simple
harmonic,

p1ðtÞ ¼ p0 cos odt; ð37Þ

p2ðtÞ ¼ p0 sin odt; ð38Þ

with amplitude p0 and driving circular frequency od :
Under the above excitation the oscillator in the sticking phase is governed by

m .x1ðtÞ þ c ’x1ðtÞ þ ðk þ kdÞx1ðtÞ ¼ p0 cos odt þ kdx1ðtiÞ 	 ra
1ðtiÞ; ð39Þ

m .x2ðtÞ þ c ’x2ðtÞ þ ðk þ kdÞx2ðtÞ ¼ p0 sin odt þ kdx2ðtiÞ 	 ra
2ðtiÞ; ð40Þ

where ti is the initial time of the sticking phase. Let

d :¼
4ðk þ kdÞ

m
	

c2

m2
> 0; a :¼

	c

2m
; b :¼

ffiffiffi
d

p
2
: ð41243Þ
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Eqs. (39) and (40) have the following closed-form solutions:

x1ðtÞ ¼ x1ðtiÞ þ
eaðt	tiÞ

b
sin bðt 	 tiÞ ’x1ðtiÞ

	
eaðt	tiÞ

bmða2 þ b2Þ
½a sin bðt 	 tiÞ 	 b cos bðt 	 tiÞ þ

1

mða2 þ b2Þ

 �
½ra

1ðtiÞ þ kx1ðtiÞ

þ
p0

bm

ðb 	 odÞ cos odt 	 a sin odt

2½a2 þ ðod 	 bÞ2
þ

p0

bm

ðod þ bÞ cos odt þ a sin odt

2½a2 þ ðod þ bÞ2

þ
p0eaðt	tiÞ

bm

ðod 	 bÞ cos ½bðt 	 tiÞ þ odti þ a sin ½bðt 	 tiÞ þ odti

2½a2 þ ðod 	 bÞ2

þ
p0eaðt	tiÞ

bm

a sin ½bðt 	 tiÞ 	 odti 	 ðod þ bÞ cos ½bðt 	 tiÞ 	 odti

2½a2 þ ðod þ bÞ2
; ð44Þ

x2ðtÞ ¼ x2ðtiÞ þ
eaðt	tiÞ

b
sin bðt 	 tiÞ ’x2ðtiÞ

	
eaðt	tiÞ

bmða2 þ b2Þ
½a sin bðt 	 tiÞ 	 b cos bðt 	 tiÞ þ

1

mða2 þ b2Þ

 �
½ra

2ðtiÞ þ kx2ðtiÞ

þ
p0

bm

a cos odt þ ðb 	 od Þ sin odt

2½a2 þ ðod 	 bÞ2
þ

p0

bm

ðod þ bÞ sin odt 	 a cos odt

2½a2 þ ðod þ bÞ2

þ
p0eaðt	tiÞ

bm

ðod 	 bÞ sin ½bðt 	 tiÞ þ odti 	 a cos ½bðt 	 tiÞ þ odti

2½a2 þ ðod 	 bÞ2

þ
p0eaðt	tiÞ

bm

ðod þ bÞ sin ½bðt 	 tiÞ 	 odti þ a cos ½bðt 	 tiÞ 	 odti

2½a2 þ ðod þ bÞ2
: ð45Þ

In the sliding phase the governing equations are however highly non-linear, so we use schemes
(31)–(36) to calculate the responses. For the purposes of demonstration we give two typical cases.
The first one adopted the following parameters: m ¼ 2500=p2 kN s2=m ð¼ 2:5 � 106=ð9:81p2Þ kgÞ;
c ¼ 200=p kN s=m; kd ¼ 50 000 kN=m; k ¼ 10 000 kN=m; ry ¼ 50 kN; p0 ¼ 250 kN; and od ¼
20p rad=s: For the non-steady state the behaviour is rather complicated, because the transition
from one phase to another phase may occur consecutively as shown in Fig. 5(h). The responses
are displayed in Figs. 5(a)–(h). The other case adopted the following parameters: m ¼
22 500=p2 kN s2=m ð¼ 2:25 � 107=ð9:81p2Þ kgÞ; c ¼ 600=p kN s=m; kd ¼ 50 000 kN=m; k ¼
10 000 kN=m; ry ¼ 50 kN; p0 ¼ 500 kN; and od ¼ 4p rad=s: The transition from the sticking
phase to the sliding phase occurred at the moment when the friction force reached the sliding
circle as shown in Fig. 6(h), and after two such transitions it remained to be in the sliding phase.
The scheme as can be seen preserves exactly one of the sliding conditions, jjrajj ¼ ry; during the
sliding phase. The responses are displayed in Figs. 6(a)–(h), which are observed to tend to the
steady state. So in the following two sections we seek the steady state, constant amplitude
solutions to the responses via a simple first order harmonic balance method.
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6. Steady state responses of circular type

A closed-form estimation of the steady state responses of the one-dimensional Coulomb friction
oscillator under harmonic loadings has been obtained in Ref. [21]. Here, we extend those results to
the two-dimensional friction oscillator. Some related issues have been discussed by Griffin and
Menq [11], Menq et al. [12,13], and Sanliturk and Ewins [14]. However, these papers gave no
closed-form formulae for the oscillation amplitude or the minimum force ratio required to prevent
the two-dimensional friction oscillator from sticking.
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Fig. 5. A typical response of the friction oscillator under small driving force showing non-steady state behaviour. Time

histories of displacements: (a) x1 and (b) x2; and of velocities (c) ’x1 and (d) ’x2; phase trajectories of ðx1; ’x1Þ in (e) and of

ðx2; ’x2Þ in (f); and response paths of ðx1; x2Þ in (g) and of ðra
1; r

a
2Þ in (h).
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Let us consider steady state sliding oscillation, and assume that the friction forces are described
by

ra
1 ¼ ry cos y; ð46Þ

ra
2 ¼ ry sin y; ð47Þ

ARTICLE IN PRESS

Fig. 6. A typical response of the friction oscillator under large driving force which shows steady state behaviour. Time

histories of displacements: (a) x1 and (b) x2; and of velocities (c) ’x1 and (d) ’x2; phase trajectories of ðx1; ’x1Þ in (e) and of

ðx2; ’x2Þ in (f); response paths of ðx1; x2Þ in (g) and of ðra
1; r

a
2Þ in (h).
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which leave an unknown phase y to be determined. By Eq. (17) it follows that

’y ¼
kd

ry

½ ’x2 cos y	 ’x1 sin y; ð48Þ

and, at the same time, Eq. (15) reduces to

’l ¼ ’x1 cos yþ ’x2 sin y: ð49Þ

Furthermore, the displacements in the steady state are assumed to be located on a circle with
radius x0 and have the following forms:

x1 ¼ x0 cos y1; ð50Þ

x2 ¼ x0 sin y1; ð51Þ

whose phase

y1 :¼ odt 	 f ð52Þ

has a phase lag f with the phase of the external excitations. We also let the phase of the friction
forces has a phase lag c with the phase of the displacements, i.e.,

y :¼ y1 	 c: ð53Þ

Three unknowns x0; f and c are involved in the above formulations, so we need three equations
to solve them. These equations will be derived below.

Substituting Eqs. (50) and (51) into Eq. (49) and using Eq. (53), render

’l ¼ 	x0od sin c: ð54Þ

Utilizing this ’l in Eq. (12) we have

’ra
1 ¼ kd ’x1 þ

kdx0od sin c
ry

ra
1; ð55Þ

’ra
2 ¼ kd ’x2 þ

kdx0od sin c
ry

ra
2: ð56Þ

Substituting Eqs. (46), (47), (50) and (51) into the above two equations and using ’y ¼ od give,
respectively,

	ry sin y ¼ 	kdx0 sin y1 þ kdx0 sin c cos y; ð57Þ

ry cos y ¼ kdx0 cos y1 þ kdx0 sin c sin y; ð58Þ

which, upon taking account of Eq. (53), lead to

	ry sin y ¼ 	kdx0 sin y cos c; ð59Þ

ry cos y ¼ kdx0 cos y cos c: ð60Þ

Both the above two equations result in

ry ¼ kdx0 cos c: ð61Þ
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Similarly, substituting Eqs. (46), (47), (50), (51), (37) and (38) into Eq. (1) we have

	mo2
dx0 cos y1 ¼ codx0 sin y1 	 kx0 cos y1 	 ry cos yþ p0 cos odt; ð62Þ

mo2
dx0 sin y1 ¼ codx0 cos y1 þ kx0 sin y1 þ ry sin y	 p0 sin odt: ð63Þ

The second equation is not independent of the first one, because it is the time derivative of the first
equation. Now using Eqs. (52) and (53) we obtain

	mo2
dx0 cos y1 ¼ codx0 sin y1 	 kx0 cos y1 	 ry cos ðy1 	 cÞ þ p0 cos ðy1 þ fÞ; ð64Þ

which requires the coefficients before cos y1 and sin y1; respectively, to vanish, as shown below

ðmo2
d 	 kÞx0 	 ry cos cþ p0 cos f ¼ 0; ð65Þ

codx0 	 ry sin c	 p0 sin f ¼ 0: ð66Þ

See also the derivations made by Griffin and Menq [11], and Eqs. (23) and (24) appeared therein.
However, Griffin and Menq obtained the following equation:

ðk 	 mo2
dÞx0 þ

r2
y

kdx0

" #2

þ codx0 þ ry

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 	

ry

kdx0

� �2
s2

4
3
5

2

¼ p2
0

by squaring Eqs. (65) and (66), adding them together, and substituting the result from Eq. (61) for
cos c and 	½1 	 r2

y=ðkdx0Þ
21=2 for sin c; but they did not succeed in solving it for x0; and appealed

its solution to a numerical method.
To proceed we solve Eqs. (65) and (66) in closed form. Divided by ry they may be non-

dimensionalized as follows:

rkðr2
w 	 1Þ #x0 	 cos cþ rf cos f ¼ 0; ð67Þ

2zrkrw #x0 	 sin c	 rf sin f ¼ 0; ð68Þ

where

#x0 :¼
kdx0

ry

ð69Þ

is called the magnification factor, and

rf :¼
p0

ry

; ð70Þ

rk :¼
k

kd

; ð71Þ

rw :¼
od

on

; ð72Þ

z :¼
c

2
ffiffiffiffiffiffiffi
mk

p ð73Þ

are dimensionless ratios: rf is the ratio of the amplitude of the driving force to the friction force
bound; rk is the ratio of the stiffnesses of damper mass and damper plate; rw is the ratio of the
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driving frequency to the natural frequency of the damper mass, on :¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; and z is the

damping ratio.
From Eqs. (61) and (69) it follows that cos c ¼ 1= #x0; and that

sin c ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 	

1

#x2
0

s
: ð74Þ

The rationale for taking a minus sign before the square root is 	sin c > 0 via Eqs. (54) and (8).
Substituting Eqs. (67) and (68) for rf cos f and for rf sin f; respectively, into the identity
ðrf cos fÞ2 þ ðrf sin fÞ2 ¼ r2

f ; and using 1= #x0 for cos c and Eq. (74) for sin c; we obtain a single
equation for #x0;

#a1 	 #a2 #x
2
0 ¼ #a3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
#x2

0 	 1

q
; ð75Þ

where

#a1 :¼ r2
f þ 2rkðr2

w 	 1Þ 	 1; ð76Þ

#a2 :¼ r2
k½4z

2r2
w þ ðr2

w 	 1Þ2; ð77Þ

#a3 :¼ 4zrkrw: ð78Þ

Squaring both the sides of Eq. (75), we obtain

#a2
2 #x

4
0 	 ð2 #a1 #a2 þ #a2

3Þ #x
2
0 þ #a2

1 þ #a2
3 ¼ 0: ð79Þ

Solving this equation for #x0 we obtain two roots as follows:

#x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 #a1 #a2 þ #a2

37 #a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 #a1 #a2 þ #a2

3 	 4 #a2
2

q
2 #a2

2

vuut
; ð80Þ

while the two phase lags c and f can be expressed, respectively, as

c ¼ 	arccos
1

#x0
; ð81Þ

f ¼ arctan
2zrkrw #x

2
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
#x2

0 	 1
q

1 	 rk #x
2
0ðr

2
w 	 1Þ

: ð82Þ

The first equation follows from cos c ¼ 1= #x0 straightforward; however, the reason for taking a
minus sign before arccos is for 	sin c > 0 as just mentioned, such that cA½	p=2; 0Þ and that ’l > 0
in the steady state sliding phase. The second equation is obtained by dividing Eq. (68) by Eq. (67),
and substituting 1= #x0 for cos c and Eq. (74) for sin c:

Here we have succeeded in transforming the dependence of the steady state responses on the
seven parameters, m; c; k; kd ; ry; p0; od ; to on the four dimensionless parameters, rf ; rk; rw; z: This
achievement may greatly reduce our work in analyzing the steady state behaviour, and gives us a
more complete information about the steady state behaviour for different values of the
parameters.
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For Eq. (80) we should consider two cases, namely

(i) 4 #a1 #a2 þ #a2
3 	 4 #a2

2o0 non-steady state,
(ii) 4 #a1 #a2 þ #a2

3 	 4 #a2
2X0 steady state.

For the latter case it is obvious thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 #a1 #a2 þ #a2

3 	 4 #a2
2

q
	 #a3

� �2

X0; ð83Þ

which is equivalent to

2 #a1 #a2 þ #a2
3 	 #a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 #a1 #a2 þ #a2

3 	 4 #a2
2

q
X2 #a2

2X0: ð84Þ

From Eqs. (80) and (84) it follows that

#x0X1; ð85Þ

which asserts that the magnification factor for the steady state case is never less than one. We
below consider only the steady state case.

Now, we prove that the exact solution of #x0 in Eq. (80) only takes values in the lower branch
curve, that is,

#x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 #a1 #a2 þ #a2

3 	 #a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 #a1 #a2 þ #a2

3 	 4 #a2
2

q
2 #a2

2

vuut
: ð86Þ

If it is not so we take the square to obtain

#x2
0 ¼

2 #a1 #a2 þ #a2
3 þ #a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 #a1 #a2 þ #a2

3 	 4 #a2
2

q
2 #a2

2

;

and substitute it into Eq. (75) for #x2
0 on the left-hand side, giving

	 #a2
3 	 #a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 #a1 #a2 þ #a2

3 	 4 #a2
2

q
2 #a2

2

¼ #a3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
#x2

0 	 1

q
:

Because #a3 is positive and #x0X1 under the condition 4 #a1 #a2 þ #a2
3 	 4 #a2

2X0 as just proved, the right-
hand side is non-negative, but the left-hand side is obviously negative, leading to a contradiction.
Hence formula (86) has been proved.

Menq and Yang [13] studied the same problem by using the single-term harmonic balance
scheme together with the non-linear differential equations of motion, which were then converted
to a set of non-linear algebraic equations in terms of the unknown motion’s amplitude and phase.
These non-linear algebraic equations as Menq and Yang ([13, Subsection 5.2]) said were then
solved iteratively to yield solutions. However, we have exactly derived formula (86) for the
motion’s amplitude, formula (82) for its phase lag with respect to the external excitation, and
formula (81) for the phase lag of the friction force with respect to the displacement.
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7. The minimum force ratio to avoid sticking

Through the above discussion we know that the bifurcation equation is

4 #a1 #a2 þ #a2
3 	 4 #a2

2 ¼ 0; ð87Þ

which is a polynomial equation of rf ; rk; rw and z; and is the boundary between two distinct types
of long-term behaviour, steady state and non-steady state. The above equation with the aid of
definitions (76)–(78) can be written as

rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2rkð1 	 r2

wÞ þ
r2

k½4z
2r2

w þ ðr2
w 	 1Þ22 	 4z2r2

w

4z2r2
w þ ðr2

w 	 1Þ2

s
: ð88Þ
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Fig. 7. Comparison of the magnification factor for the friction oscillator. The solid curves were calculated from

formula (86) for different rf ’s in (a) and different rw’s in (b). The results confirm the validity of formula (86).
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This formula tells us the minimum force ratio required (the minimum driving force amplitude
required if the friction force bound is known and the maximum friction force bound allowed if the
driving force amplitude is known) to avoid sticking in terms of the other parameters rk; rw and z:

In Fig. 7(a) the magnification factor as given by Eq. (86) is plotted with respect to rf for fixed
values of rw ¼ 1; rk ¼ 10; and z ¼ 0:05: In Fig. 7(b) the magnification factor is plotted with respect
to rw for fixed values of rf ¼ 5; rk ¼ 10; and z ¼ 0:05: Both the results are compared with the
(highly accurate, almost exact) values numerically calculated by the group-preserving scheme,
confirming that the handy formula (86) is capable of estimating the magnification factor. Having
substituted Eq. (86) for #x0 and Eq. (82) for f in Eqs. (50) and (51), we plotted the steady state
phase portraits in Fig. 8 under the following parameters: rf ¼ 10; rk ¼ 1; rw ¼ 2; and z ¼ 0:02:
Comparing with the steady state responses during the 19th period calculated by the numerical
scheme shows that the above handy estimations match the (almost exact) results very well.
According to formula (86), we plotted the magnification factor with respect to rw for different
values of z ¼ 0; 0:04; 0:08; 0:12; 0:16; 0:2; and fixed values of rf ¼ 10 and rk ¼ 2 in Fig. 9(a), and
also with respect to rk for different values of z ¼ 0; 0:04; 0:08; 0:12; 0:16; 0:2; and fixed value of
rw ¼ 1:1 in Fig. 9(b).

For the energy dissipation purposes we usually hope the oscillator can operate in the sliding
phase permanently and without sticking, and thus consumes the input energy continuously.
Eq. (88) provides a minimum requirement of the driving force amplitude p0 (when ry is already
given) or a maximum bound of the friction force (when p0 is already given) to render the friction
oscillator vibratory in the steady state sliding phase. We plot the minimum curves for different
values of z ¼ 0; 0:04; 0:08; 0:12; 0:16; 0:2; and fixed value of rk ¼ 2 in Fig. 10(a). The damping ratio
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Fig. 8. Comparison of steady state responses in the phase planes (a) ðx1; x2Þ; (b) ð ’x1; ’x2Þ; (c) ðx1; ’x1Þ; and (d) ðx2; ’x2Þ:
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has little influence on rf in the range of lower and higher frequency ratios. If the applied load p0 is
large enough or in converse the friction force bound ry is small enough, rendering the ratio
rf ¼ p0=ry over the values predicted by the minimum curves, the oscillator will settle down to the
steady state sliding motion. Otherwise, the oscillator may respond consecutively in the two phases
as shown in Fig. 5, and never comes to a steady state sliding phase. Sometimes we may want to
know what rf is required to obtain a certain value of the magnification factor #x0: From Eqs. (75)
and (76)–(78) it follows that

rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2rkð1 	 r2

wÞ þ r2
k½4z

2r2
w þ ðr2

w 	 1Þ2 #x2
0 þ 4zrkrw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
#x2

0 	 1
qr

: ð89Þ

In Fig. 10(b) we plot the above rf with respect to rw for different values of #x0 ¼
1:5; 2:5; 3:5; 4:5; 5:5; 6:5; and fixed values of z ¼ 0:02 and rk ¼ 2:
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Fig. 9. (a) The #x0 versus rw curves with fixed rf ¼ 10; rk ¼ 2 and different z’s, and (b) the #x0 versus rk curves with fixed

rf ¼ 10; rw ¼ 1:1 and different z’s, all calculated from Eq. (86).
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8. Friction oscillator with rigid support

For the case of kd ¼ N we obtain a two-dimensional friction oscillator with rigid support. Such
model is usually adopted by engineers to analyze the support friction behaviour of structures or
equipment directly sitting on the floor or ground or with support of the bulk type. Such model is
indeed a limiting case of the model studied in Sections 2–7. Most results obtained above are still
applicable, but some modifications need to be done as follows.

8.1. Numerical scheme

For the two-dimensional friction oscillator with planar rigid support the following numerical
scheme can be derived:

x1ðn þ 1Þ ¼ x1ðnÞ þ Dty1ðnÞ; ð90Þ

ARTICLE IN PRESS

Fig. 10. (a) The minimum force ratio (88) required to render the friction oscillator in the steady state sliding motion for

fixed rk ¼ 2 and different values of the damping ratio z; and (b) the force ratio required to achieve a certain values of the

magnification factor #x0 for fixed rk ¼ 2 and z ¼ 0:02:
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x2ðn þ 1Þ ¼ x2ðnÞ þ Dty2ðnÞ; ð91Þ

y1ðn þ 1Þ ¼ y1ðnÞ 	
Dt

m
½kx1ðnÞ þ cy1ðnÞ þ ra

1ðnÞ 	 p1ðnÞ þ c1; ð92Þ

y2ðn þ 1Þ ¼ y2ðnÞ 	
Dt

m
½kx2ðnÞ þ cy2ðnÞ þ ra

2ðnÞ 	 p2ðnÞ þ c2; ð93Þ

ra
1ðn þ 1Þ ¼

ryy1ðn þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1ðn þ 1Þ þ y2
2ðn þ 1Þ

q ; ð94Þ

ra
2ðn þ 1Þ ¼

ryy2ðn þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1ðn þ 1Þ þ y2
2ðn þ 1Þ

q : ð95Þ

Eqs. (94) and (95) are the direct results of Eq. (5) by substituting ’l ¼ jj ’xjj; which follows from
Eq. (10) by letting ’xf ¼ ’x; since ’xe ¼ 0 due to the rigid support. It is easy to see that ðra

1Þ
2ðn þ

1Þ þ ðra
2Þ

2ðn þ 1Þ ¼ r2
y in the sliding phase. The above last two equations are independent of the

time step size. A typical response is displayed in Fig. 11 for illustration, where the parameters used
were m ¼ 1000=ð4pÞ2 kN s2=m ð¼ 106=ð9:81 � 16p2Þ kgÞ; c ¼ 10=p kN s=m; k ¼ 1000 kN=m;
ry ¼ 30 kN; p0 ¼ 60 kN; and od ¼ 8p rad=s:

8.2. Steady state motion

The rigid model is assumed subject to the same periodic input as given by Eqs. (37) and (38).
First, we note that the phase lag c is p=2 upon letting kd ¼ N ðrk ¼ 0Þ in Eq. (61), which
indicates that the displacements and friction forces have a phase lag p=2: Second, dividing
Eqs. (65) and (66) by p0; and letting c ¼ p=2 in these two equations we obtain

ðr2
w 	 1Þ #x0 þ cos f ¼ 0; ð96Þ

2zrw #x0 	
1

rf

	 sin f ¼ 0; ð97Þ

where, instead of definition (69),

#x0 :¼
kx0

p0
ð98Þ

is the magnification factor for the rigid model. Substituting Eq. (96) for cos f and Eq. (97) for
sin f in the identity cos2fþ sin2f ¼ 1; we obtain a single equation for #x0;

#b2 #x
2
0 	 #b3 #x0 	 #b1 ¼ 0; ð99Þ

where

#b1 :¼ 1 	
1

r2
f

; ð100Þ

#b2 :¼ 4z2r2
w þ ðr2

w 	 1Þ2; ð101Þ

#b3 :¼
4zrw

rf

; ð102Þ
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in which rf ; rw and z have been defined in Eqs. (70)–(73). Solving Eq. (99) for #x0 we obtain

#x0 ¼
#b3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#b2
3 þ 4 #b1

#b2

q
2 #b2

: ð103Þ

ARTICLE IN PRESS

Fig. 11. A typical response of the two-dimensional friction oscillator under large driving force showing steady state

behaviour. Time histories of displacements: (a) x1 and (b) x2; and of velocities (c) ’x1 and (d) ’x2; response paths of

ðx1; x2Þ in (e) and of ðra
1; r

a
2Þ in (f); and dissipation loops of ðx1; ra

1Þ in (g) and of ðx2; ra
2Þ in (h).
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Due to #b2 > 0; the above formula is well defined only for rf X1: The phase lag f follows from
Eqs. (96) and (97),

f ¼ arctan
2zrw #x0 	 1=rf

ð1 	 r2
wÞ #x0

: ð104Þ

In Fig. 12(a) the magnification factor as given by Eq. (103) is plotted with respect to rf for fixed
values of rw ¼ 2 and z ¼ 0:05: In Fig. 12(b) the magnification factor is plotted with respect to rw

for fixed values of rf ¼ 5 and z ¼ 0:05: Both results are compared with the (highly accurate,
almost exact) values numerically calculated by the group-preserving scheme, confirming that the
handy formula (103) is very good to estimate the magnification factor.
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Fig. 12. Comparison of the magnification factor for the friction oscillator with rigid support. The solid curves were

calculated from formula (103) for different rf ’s in (a) and different rw’s in (b). The results confirm the validity of formula

(103).
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For the no-viscous-damping case, i.e., z ¼ 0; we have

#x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðr2
w 	 1Þ2

	
1

r2
f ðr

2
w 	 1Þ2

s
: ð105Þ

The corresponding formula of the maximum displacement for the one-dimensional Coulomb
friction oscillator subjected to harmonic excitation p0 sin odt has been derived in Ref. [21],

#x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1 	 r2
wÞ

2
	

1

r2
f r2

w

sinðp=rwÞ
1 þ cosðp=rwÞ

� �2

vuut : ð106Þ

In Fig. 13 the variations of the above two #x0’s with respect to rw are compared. The two
oscillators, although with different dimensions, give almost the same magnification factors for
most frequency ratios.

Substituting Eqs. (100)–(102) into the equality 4 #b1
#b2 þ #b2

3 ¼ 0 we obtain

rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

w 	 1Þ2

4z2r2
w þ ðr2

w 	 1Þ2

s
: ð107Þ

This equation gives a closed-form formula of the border surface in the parametric space ðrf ; rw; zÞ
for the steady state sliding oscillations of the two-dimensional friction oscillator with rigid
support. It provides engineers the minimum driving force amplitude required to avoid sticking for
different friction force bounds and different frequency ratios. In Fig. 14 it is displayed as the solid
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Fig. 13. The magnification factor versus the frequency ratio rw for the one- and two-dimensional friction oscillators.
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lines for different values of z ¼ 0:02; 0:06; 0:1; 0:14; 0:18: The rf which is greater than what the
above formula predicts will make the oscillator oscillate without sticking in the steady state. For
lower and higher frequency ratios the damping ratio gave little influence on rf as shown in Fig. 14.

9. Conclusions

We have shown that a two-dimensional friction oscillator can be described completely by model
(1)–(9). This oscillator can be applied to study the hysteretic behaviour of building base isolation
and also vibration abatement of turbomachinery blades. Both have widespread applications.
Precise criteria for sliding and sticking of the oscillator were derived. We developed a group-
preserving scheme to calculate the responses, which could update the friction force to fulfill the
sliding conditions without any iteration at all and, thus, provided very well computational
accuracy and efficiency. For harmonic excitations several examples were given to show the
behaviour of various responses. The simple harmonic balance method was employed to estimate
the steady state responses. The closed-form formula of the magnification factor was derived in
terms of the four dimensionless ratios instead of the original seven system parameters. The
formula supplied handily very good estimations when compared with the numerical results
calculated by the group-preserving scheme. The closed-form formula (88) of the border surface in
the parametric space for non-sticking and sticking oscillations was now available. When the
stiffness of the damper plate tends to infinity, we have a two-dimensional friction oscillator with
rigid support, for which formulae (103) and (107) were derived to calculate the magnification
factor and the minimum force ratio for the sliding oscillations, respectively. In view of the
detrimental effect of sticking on the operation and performance of oscillators (e.g., machine
parts), these handy formulae must be very useful for engineers to select a minimum driving force
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Fig. 14. The minimum force ratio required to avoid sticking. The curves represent Eq. (107) for different values of the

damping ratio z:
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amplitude or a maximum friction force bound to prevent an oscillating object from sticking to the
friction surface.
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